Search results

1 – 1 of 1
Article
Publication date: 25 January 2021

Faezeh Nejati Barzoki, Ghanbar Ali Sheikhzadeh, Morteza Khoshvaght Aliabadi and Ali Akbar Abbasian Arani

The purpose of this paper is to investigate thermohydraulic characteristics of turbulent flow of water (4,000 = Re = 10,000) in a rectangular channel equipped with perforated…

Abstract

Purpose

The purpose of this paper is to investigate thermohydraulic characteristics of turbulent flow of water (4,000 = Re = 10,000) in a rectangular channel equipped with perforated chevron plat-fin (PCPF) with different vortex generators (VGs) shapes.

Design/methodology/approach

First, three general shapes of VGs including rectangular, triangular and half circle, are compared to each other. Then, the various shapes of rectangular VGs, (horizontal, vertical and square) and triangular VGs, (forward, backward and symmetric) are evaluated. To comprehensively evaluate the thermohydraulic performance of the PCPF with various VG shapes, the relationship between the Colburn factor and the friction factor (j/f) is presented, then a performance index (η) is applied using these factors.

Findings

Results show that the enhanced models of the PCPF, which are equipped with VGs, have higher values of j/f ratio and η as compared with the reference model (R). Further, the half-circle VG with the lowest pressure drop values (about 2.4% and 4.9%, averagely as compared with the S and ST vortex generators), shows the highest thermohydraulic performance among the proposed shapes. The maximum of performance index of 1.14 is found for the HC vortex generator at Re = 4,000. It is also found that the square and forward triangular VGs, have the best thermohydraulic performance among the rectangular and triangular VGs respectively and the highest performance index of 1.13 and 1.11 are reported for these VGs.

Originality/value

The thermohydraulic performance of the PCPF with different vortex generators VGs shapes have been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1